Title: Reproduction of Spatial Accessibility of COVID-19 Healthcare Resources in Illinois¶

Reproduction of: Rapidly measuring spatial accessibility of COVID-19 healthcare resources: a case study of Illinois, USA

Original study by Kang, J. Y., A. Michels, F. Lyu, Shaohua Wang, N. Agbodo, V. L. Freeman, and Shaowen Wang. 2020. Rapidly measuring spatial accessibility of COVID-19 healthcare resources: a case study of Illinois, USA. International Journal of Health Geographics 19 (1):1–17. DOI:10.1186/s12942-020-00229-x.

Reproduction Authors: Joe Holler, Derrick Burt, and Kufre Udoh With contributions from Peter Kedron, Drew An-Pham, and the Spring 2021 Open Source GIScience class at Middlebury

Reproduction Materials Available at: github.com/HEGSRR/RPr-Kang-2020

Created: 2021-06-01 Revised: 2021-08-19

Original Study Design¶

The original study by Kang et al. focused on determining accessibility to healthcare resources for COVID-19 in the state of Illinois and Chicago. The goal was to determine a service to patient ratio for each given area in the study. The authors used a network graph of the Chicago area road network and ran a two-step floating catchment area around hospitals to determine the catchment areas of those hospitals for 10 minute, 20 minute, and 30 minute distances. They then determined the ratio of service (either ICU beds or ventilators) to patients (either reported COVID cases or population older than 50). The service ratios were then overlayed on a hexagonal grid to visualize spatial accessibility. The original study conducted this analysis over the entire state of Illinois, however, our reanalysis will focus only on the Chicago area.

Original Data¶

To perform the ESFCA method, three types of data are required, as follows: (1) road network, (2) population, and (3) hospital information. The road network can be obtained from the OpenStreetMap Python Library, called OSMNX. The population data is available on the American Community Survey. Lastly, hospital information is also publically available on the Homelanad Infrastructure Foundation-Level Data.

Modules¶

Import necessary libraries to run this model. See environment.yml for the library versions used for this analysis.

In [2]:
# Import modules
import numpy as np
import pandas as pd
import geopandas as gpd
import networkx as nx
import osmnx as ox
import re
from shapely.geometry import Point, LineString, Polygon
import matplotlib.pyplot as plt
from tqdm import tqdm
import multiprocessing as mp
import folium
import itertools
import os
import time
import warnings
import IPython
import requests
from IPython.display import display, clear_output

warnings.filterwarnings("ignore")
print('\n'.join(f'{m.__name__}=={m.__version__}' for m in globals().values() if getattr(m, '__version__', None)))
numpy==1.22.0
pandas==1.3.5
geopandas==0.10.2
networkx==2.6.3
osmnx==1.1.2
re==2.2.1
folium==0.12.1.post1
IPython==8.3.0
requests==2.27.1

Check Directories¶

Because we have restructured the repository for replication, we need to check our working directory and make necessary adjustments.

In [3]:
# Check working directory
os.getcwd()
Out[3]:
'/home/jovyan/work/RPr-Kang-2020/procedure/code'
In [4]:
# Use to set work directory properly
if os.path.basename(os.getcwd()) == 'code':
    os.chdir('../../')
os.getcwd()
Out[4]:
'/home/jovyan/work/RPr-Kang-2020'

Load and Visualize Data¶

Population and COVID-19 Cases Data by County¶

'Cases' column is coming in as 'Unnamed_0' --> easy to rename but this probably should be reportede to the original authors

If you would like to use the data generated from the pre-processing scripts, use the following code:

covid_data = gpd.read_file('./data/raw/public/Pre-Processing/covid_pre-processed.shp')
atrisk_data = gpd.read_file('./data/raw/public/Pre-Processing/atrisk_pre-processed.shp')
In [5]:
# Read in at risk population data
atrisk_data = gpd.read_file('./data/raw/public/PopData/Illinois_Tract.shp')
atrisk_data.head()
Out[5]:
GEOID STATEFP COUNTYFP TRACTCE NAMELSAD Pop Unnamed_ 0 NAME OverFifty TotalPop geometry
0 17091011700 17 091 011700 Census Tract 117 3688 588 Census Tract 117, Kankakee County, Illinois 1135 3688 POLYGON ((-87.88768 41.13594, -87.88764 41.136...
1 17091011800 17 091 011800 Census Tract 118 2623 220 Census Tract 118, Kankakee County, Illinois 950 2623 POLYGON ((-87.89410 41.14388, -87.89400 41.143...
2 17119400951 17 119 400951 Census Tract 4009.51 5005 2285 Census Tract 4009.51, Madison County, Illinois 2481 5005 POLYGON ((-90.11192 38.70281, -90.11128 38.703...
3 17119400952 17 119 400952 Census Tract 4009.52 3014 2299 Census Tract 4009.52, Madison County, Illinois 1221 3014 POLYGON ((-90.09442 38.72031, -90.09360 38.720...
4 17135957500 17 135 957500 Census Tract 9575 2869 1026 Census Tract 9575, Montgomery County, Illinois 1171 2869 POLYGON ((-89.70369 39.34803, -89.69928 39.348...
In [6]:
# Read in covid case data
covid_data = gpd.read_file('./data/raw/public/PopData/Chicago_ZIPCODE.shp')
covid_data['cases'] = covid_data['cases']
covid_data.head()
Out[6]:
ZCTA5CE10 County State Join ZONE ZONENAME FIPS pop cases geometry
0 60660 Cook County IL Cook County IL IL_E Illinois East 1201 43242 78 POLYGON ((-87.65049 41.99735, -87.65029 41.996...
1 60640 Cook County IL Cook County IL IL_E Illinois East 1201 69715 117 POLYGON ((-87.64645 41.97965, -87.64565 41.978...
2 60614 Cook County IL Cook County IL IL_E Illinois East 1201 71308 134 MULTIPOLYGON (((-87.67703 41.91845, -87.67705 ...
3 60712 Cook County IL Cook County IL IL_E Illinois East 1201 12539 42 MULTIPOLYGON (((-87.76181 42.00465, -87.76156 ...
4 60076 Cook County IL Cook County IL IL_E Illinois East 1201 31867 114 MULTIPOLYGON (((-87.74782 42.01540, -87.74526 ...

Load Hospital Data¶

Note that 999 is treated as a "NULL"/"NA" so these hospitals are filtered out. This data contains the number of ICU beds and ventilators at each hospital.

In [7]:
# Read in hospital data
hospitals = gpd.read_file('./data/raw/public/HospitalData/Chicago_Hospital_Info.shp')
hospitals.head()
Out[7]:
FID Hospital City ZIP_Code X Y Total_Bed Adult ICU Total Vent geometry
0 2 Methodist Hospital of Chicago Chicago 60640 -87.671079 41.972800 145 36 12 MULTIPOINT (-87.67108 41.97280)
1 4 Advocate Christ Medical Center Oak Lawn 60453 -87.732483 41.720281 785 196 64 MULTIPOINT (-87.73248 41.72028)
2 13 Evanston Hospital Evanston 60201 -87.683288 42.065393 354 89 29 MULTIPOINT (-87.68329 42.06539)
3 24 AMITA Health Adventist Medical Center Hinsdale Hinsdale 60521 -87.920116 41.805613 261 65 21 MULTIPOINT (-87.92012 41.80561)
4 25 Holy Cross Hospital Chicago 60629 -87.690841 41.770001 264 66 21 MULTIPOINT (-87.69084 41.77000)

Generate and Plot Map of Hospitals¶

In [8]:
# Plot hospital data
m = folium.Map(location=[41.85, -87.65], tiles='cartodbpositron', zoom_start=10)
for i in range(0, len(hospitals)):
    folium.CircleMarker(
      location=[hospitals.iloc[i]['Y'], hospitals.iloc[i]['X']],
      popup="{}{}\n{}{}\n{}{}".format('Hospital Name: ',hospitals.iloc[i]['Hospital'],
                                      'ICU Beds: ',hospitals.iloc[i]['Adult ICU'],
                                      'Ventilators: ', hospitals.iloc[i]['Total Vent']),
      radius=5,
      color='blue',
      fill=True,
      fill_opacity=0.6,
      legend_name = 'Hospitals'
    ).add_to(m)
legend_html =   '''<div style="position: fixed; width: 20%; heigh: auto;
                            bottom: 10px; left: 10px;
                            solid grey; z-index:9999; font-size:14px;
                            ">&nbsp; Legend<br>'''

m
Out[8]:
Make this Notebook Trusted to load map: File -> Trust Notebook

Load and Plot Hexagon Grids (500-meter resolution)¶

In [9]:
# Read in and plot grid file for Chicago
grid_file = gpd.read_file('./data/raw/public/GridFile/Chicago_Grid.shp')
grid_file.plot(figsize=(8,8))
Out[9]:
<AxesSubplot:>

Load the Road Network¶

If Chicago_Network_Buffer.graphml does not already exist, this cell will query the road network from OpenStreetMap.

Each of the road network code blocks may take a few mintues to run.

In [10]:
%%time
# To create a new graph from OpenStreetMap, delete or rename data/raw/private/Chicago_Network_Buffer.graphml 
# (if it exists), and set OSM to True 
OSM = False

# if buffered street network is not saved, and OSM is preferred, # generate a new graph from OpenStreetMap and save it
if not os.path.exists("./data/raw/private/Chicago_Network_Buffer.graphml") and OSM:
    print("Loading buffered Chicago road network from OpenStreetMap. Please wait... runtime may exceed 9min...", flush=True)
    G = ox.graph_from_place('Chicago', network_type='drive', buffer_dist=24140.2) 
    print("Saving Chicago road network to raw/private/Chicago_Network_Buffer.graphml. Please wait...", flush=True)
    ox.save_graphml(G, './data/raw/private/Chicago_Network_Buffer.graphml')
    print("Data saved.")

# otherwise, if buffered street network is not saved, download graph from the OSF project
elif not os.path.exists("./data/raw/private/Chicago_Network_Buffer.graphml"):
    print("Downloading buffered Chicago road network from OSF...", flush=True)
    url = 'https://osf.io/download/z8ery/'
    r = requests.get(url, allow_redirects=True)
    print("Saving buffered Chicago road network to file...", flush=True)
    open('./data/raw/private/Chicago_Network_Buffer.graphml', 'wb').write(r.content)

# if the buffered street network is already saved, load it
if os.path.exists("./data/raw/private/Chicago_Network_Buffer.graphml"):
    print("Loading buffered Chicago road network from raw/private/Chicago_Network_Buffer.graphml. Please wait...", flush=True)
    G = ox.load_graphml('./data/raw/private/Chicago_Network_Buffer.graphml') 
    print("Data loaded.") 
else:
    print("Error: could not load the road network from file.")
Loading buffered Chicago road network from raw/private/Chicago_Network_Buffer.graphml. Please wait...
Data loaded.
CPU times: user 51.7 s, sys: 2.86 s, total: 54.5 s
Wall time: 54.2 s

Plot the Road Network¶

In [11]:
%%time
ox.plot_graph(G, node_size = 1, bgcolor = 'white', node_color = 'black', edge_color = "#333333", node_alpha = 0.5, edge_linewidth = 0.5)
CPU times: user 1min 27s, sys: 501 ms, total: 1min 28s
Wall time: 1min 28s
Out[11]:
(<Figure size 576x576 with 1 Axes>, <AxesSubplot:>)

Check speed limit values¶

Display all the unique speed limit values and count how many network edges (road segments) have each value. We will compare this to our cleaned network later.

In [77]:
%%time
# Turn nodes and edges into geodataframes
nodes, edges = ox.graph_to_gdfs(G, nodes=True, edges=True)

# Get unique counts of road segments for each speed limit
print(edges['maxspeed'].value_counts())
print(str(len(edges)) + " edges in graph")

# can we also visualize highways / roads with higher speed limits to check accuracy?
# the code above converts the graph into an edges geodataframe, which could theoretically be filtered
# by fast road segments and mapped, e.g. in folium
25 mph                        4793
30 mph                        3555
35 mph                        3364
40 mph                        2093
45 mph                        1418
20 mph                        1155
55 mph                         614
60 mph                         279
50 mph                         191
40                              79
15 mph                          76
70 mph                          71
65 mph                          54
10 mph                          38
[40 mph, 45 mph]                27
[30 mph, 35 mph]                26
45,30                           24
[40 mph, 35 mph]                22
70                              21
25                              20
[55 mph, 45 mph]                16
25, east                        14
[45 mph, 35 mph]                13
[30 mph, 25 mph]                10
[45 mph, 50 mph]                 8
50                               8
[40 mph, 30 mph]                 7
[35 mph, 25 mph]                 6
[55 mph, 60 mph]                 5
20                               4
[70 mph, 60 mph]                 3
[65 mph, 60 mph]                 3
[40 mph, 45 mph, 35 mph]         3
[70 mph, 65 mph]                 2
[70 mph, 45 mph, 5 mph]          2
[40, 45 mph]                     2
[35 mph, 50 mph]                 2
35                               2
[55 mph, 65 mph]                 2
[40 mph, 50 mph]                 2
[15 mph, 25 mph]                 2
[40 mph, 35 mph, 25 mph]         2
[15 mph, 40 mph, 30 mph]         2
[20 mph, 25 mph]                 2
[30 mph, 25, east]               2
[65 mph, 55 mph]                 2
[20 mph, 35 mph]                 2
[55 mph, 55]                     2
55                               2
[15 mph, 30 mph]                 2
[45 mph, 30 mph]                 2
[15 mph, 45 mph]                 2
[55 mph, 45, east, 50 mph]       2
[20 mph, 30 mph]                 1
[5 mph, 45 mph, 35 mph]          1
[55 mph, 35 mph]                 1
[5 mph, 35 mph]                  1
[55 mph, 50 mph]                 1
Name: maxspeed, dtype: int64
384240 edges in graph
CPU times: user 43.7 s, sys: 321 ms, total: 44 s
Wall time: 43.9 s
In [78]:
edges.head()
Out[78]:
osmid highway oneway length name geometry lanes ref bridge maxspeed access service tunnel junction width area
u v key
261095436 261095437 0 24067717 residential False 46.873 NaN LINESTRING (-87.90237 42.10571, -87.90198 42.1... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
261095437 261095439 0 24067717 residential False 46.317 NaN LINESTRING (-87.90198 42.10540, -87.90159 42.1... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
261095436 0 24067717 residential False 46.873 NaN LINESTRING (-87.90198 42.10540, -87.90237 42.1... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
261109275 0 24069424 residential False 34.892 NaN LINESTRING (-87.90198 42.10540, -87.90227 42.1... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
261109274 0 24069424 residential False 47.866 NaN LINESTRING (-87.90198 42.10540, -87.90156 42.1... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

Update Speed Limits¶

Cleans the OSMNX network to work better with drive-time analysis.

Instead of using only the few speed limits in Open Street map and filling in the speed of all other roads as 30 or 35 mph the add_edge_speeds function will fill in the speed of all other roads based on the mean speed in OSM for the given road type. For example, 'residential' might have an average speed of 20 mph. The goal of this step is to account for highways that don't have speeds listed in OSM and so are listed as having 35 mph speed limits, or on the other side small alleys that don't have listed speeds and should be closer to 20 mph. .

Args:

  • network: OSMNX network for the spatial extent of interest

Returns:

  • OSMNX network: cleaned OSMNX network for the spatial extent
In [33]:
G = ox.speed.add_edge_speeds(G)


# two things about this function:
# 1) the work to remove nodes is hardly worth it now that OSMnx cleans graphs by default
# the function is now only pruning < 300 nodes
# 2) try using the OSMnx speed module for setting speeds, travel times
# https://osmnx.readthedocs.io/en/stable/user-reference.html#module-osmnx.speed
# just be careful about units of speed and time!
# the remainder of this code expects 'time' to be measured in minutes




# def network_setting(network):
#     _nodes_removed = len([n for (n, deg) in network.out_degree() if deg ==0])
#     network.remove_nodes_from([n for (n, deg) in network.out_degree() if deg ==0])
#     for component in list(nx.strongly_connected_components(network)):
#         if len(component)<10:
#             for node in component:
#                 _nodes_removed+=1
#                 network.remove_node(node)
#     for u, v, k, data in tqdm(G.edges(data=True, keys=True),position=0):
#         if 'maxspeed' in data.keys():
#             speed_type = type(data['maxspeed'])
#             if (speed_type==str):
#                 # Add in try/except blocks to catch maxspeed formats that don't fit Kang et al's cases
#                 try:
#                     if len(data['maxspeed'].split(','))==2:
#                         data['maxspeed_fix']=float(data['maxspeed'].split(',')[0])                  
#                     elif data['maxspeed']=='signals':
#                         data['maxspeed_fix']=30.0 # drive speed setting as 35 miles
#                     else:
#                         data['maxspeed_fix']=float(data['maxspeed'].split()[0])
#                 except:
#                     data['maxspeed_fix']=30.0 #miles
#             else:
#                 try:
#                     data['maxspeed_fix']=float(data['maxspeed'][0].split()[0])
#                 except:
#                     data['maxspeed_fix']=30.0 #miles
#         else:
#             data['maxspeed_fix']=30.0 #miles
#         data['maxspeed_meters'] = data['maxspeed_fix']*26.8223 # convert mile per hour to meters per minute
#         data['time'] = float(data['length'])/ data['maxspeed_meters'] # meters / meters per minute = minutes
#     print("Removed {} nodes ({:2.4f}%) from the OSMNX network".format(_nodes_removed, _nodes_removed/float(network.number_of_nodes())))
#     print("Number of nodes: {}".format(network.number_of_nodes()))
#     print("Number of edges: {}".format(network.number_of_edges()))    
#     return(network)

Preprocess the Network using network_setting¶

In [13]:
%%time
#G, hospitals, grid_file, pop_data = file_import (population_dropdown.value)
#G = network_setting(G)
# Create point geometries for each node in the graph, to make constructing catchment area polygons easier
for node, data in G.nodes(data=True):
    data['geometry']=Point(data['x'], data['y'])
# Modify code to react to processor dropdown (got rid of file_import function)
100%|██████████| 383911/383911 [00:02<00:00, 165838.76it/s]
Removed 274 nodes (0.0019%) from the OSMNX network
Number of nodes: 142044
Number of edges: 383911
CPU times: user 9.98 s, sys: 859 ms, total: 10.8 s
Wall time: 10.7 s

Re-check speed limit values¶

Display all the unique speed limit values and count how many network edges (road segments) have each value. Compare to the previous results.

In [34]:
%%time
## Get unique counts for each road network
# Turn nodes and edges in geodataframes
nodes, edges = ox.graph_to_gdfs(G, nodes=True, edges=True)

# Count
edges['speed_mph'] = edges['speed_kph']*0.621371
G = ox.graph_from_gdfs(nodes, edges)
print(edges['speed_mph'].value_counts())
print(str(len(edges)) + " edges in graph")
24.357743    291413
30.012219     29822
35.231736     26353
37.344397     14985
24.979114      5604
34.983187      3364
53.624317      2200
40.016292      2093
20.008146      1872
26.656816      1793
44.987260      1418
43.371696       654
54.991334       606
55.985527       565
60.024439       277
50.020366       191
31.689921       118
24.854840        80
14.975041        76
70.028512        61
64.995407        42
10.004073        38
15.534275        34
42.253228        29
32.311292        26
28.148106        24
37.282260        24
43.495970        21
39.767744        18
49.709680        16
27.340324        12
34.796776         9
47.224196         8
31.068550         8
29.825808         8
22.369356         6
57.166132         5
59.651616         4
44.117341         4
12.427420         4
64.622584         3
19.883872         3
44.738712         3
27.961695         3
62.137100         3
32.559840         2
34.175405         2
67.108068         2
21.747985         2
32.932663         2
52.195164         1
Name: speed_mph, dtype: int64
383911 edges in graph
CPU times: user 1min 54s, sys: 1.59 s, total: 1min 56s
Wall time: 1min 55s

"Helper" Functions¶

The functions below are needed for our analysis later, let's take a look!

hospital_setting¶

Finds the nearest network node for each hospital.

Args:

  • hospital: GeoDataFrame of hospitals
  • G: OSMNX network

Returns:

  • GeoDataFrame of hospitals with info on nearest network node
In [14]:
def hospital_setting(hospitals, G):
    # Create an empty column 
    hospitals['nearest_osm']=None
    # Append the neaerest osm column with each hospitals neaerest osm node
    for i in tqdm(hospitals.index, desc="Find the nearest network node from hospitals", position=0):
        hospitals['nearest_osm'][i] = ox.get_nearest_node(G, [hospitals['Y'][i], hospitals['X'][i]], method='euclidean') # find the nearest node from hospital location
    print ('hospital setting is done')
    return(hospitals)

pop_centroid¶

Converts geodata to centroids

Args:

  • pop_data: a GeodataFrame
  • pop_type: a string, either "pop" for general population or "covid" for COVID-19 case data

Returns:

  • GeoDataFrame of centroids with population data
In [15]:
def pop_centroid (pop_data, pop_type):
    pop_data = pop_data.to_crs({'init': 'epsg:4326'})
    # If pop is selected in dropdown, select at risk pop where population is greater than 0
    if pop_type =="pop":
        pop_data=pop_data[pop_data['OverFifty']>=0]
    # If covid is selected in dropdown, select where covid cases are greater than 0
    if pop_type =="covid":
        pop_data=pop_data[pop_data['cases']>=0]
    pop_cent = pop_data.centroid # it make the polygon to the point without any other information
    # Convert to gdf
    pop_centroid = gpd.GeoDataFrame()
    i = 0
    for point in tqdm(pop_cent, desc='Pop Centroid File Setting', position=0):
        if pop_type== "pop":
            pop = pop_data.iloc[i]['OverFifty']
            code = pop_data.iloc[i]['GEOID']
        if pop_type =="covid":
            pop = pop_data.iloc[i]['cases']
            code = pop_data.iloc[i].ZCTA5CE10
        pop_centroid = pop_centroid.append({'code':code,'pop': pop,'geometry': point}, ignore_index=True)
        i = i+1
    return(pop_centroid)

djikstra_cca_polygons¶

Function written by Joe Holler + Derrick Burt. It is a more efficient way to calculate distance-weighted catchment areas for each hospital. The algorithm runs quicker than the original one ("calculate_catchment_area"). It first creaets a dictionary (with a node and its corresponding drive time from the hospital) of all nodes within a 30 minute drive time (using single_cource_dijkstra_path_length function). From here, two more dictionaries are constructed by querying the original one. From this dictionaries, single part convex hulls are created for each drive time interval and appended into a single list (one list with 3 polygon geometries). Within the list, the polygons are differenced from each other to produce three catchment areas.

Args:

  • G: cleaned network graph with node point geometries attached
  • nearest_osm: A unique nearest node ID calculated for a single hospital
  • distances: 3 distances (in drive time) to calculate catchment areas from
  • distance_unit: unit to calculate (time)

Returns:

  • A list of 3 diffrenced (not-overlapping) catchment area polygons (10 min poly, 20 min poly, 30 min poly)
In [16]:
def dijkstra_cca_polygons(G, nearest_osm, distances, distance_unit = "time"):
    
    '''
    
    Before running: must assign point geometries to street nodes
    
    # create point geometries for the entire graph
    for node, data in G.nodes(data=True):
    data['geometry']=Point(data['x'], data['y'])
    
    '''
    
    ## CREATE DICTIONARIES
    # create dictionary of nearest nodes
    nearest_nodes_30 = nx.single_source_dijkstra_path_length(G, nearest_osm, distances[2], distance_unit) # creating the largest graph from which 10 and 20 minute drive times can be extracted from
    
    # extract values within 20 and 10 (respectively) minutes drive times
    nearest_nodes_20 = dict()
    nearest_nodes_10 = dict()
    for key, value in nearest_nodes_30.items():
        if value <= 20:
            nearest_nodes_20[key] = value
        if value <= 10:
            nearest_nodes_10[key] = value
    
    ## CREATE POLYGONS FOR 3 DISTANCE CATEGORIES (10 min, 20 min, 30 min)
    # 30 MIN
    # If the graph already has a geometry attribute with point data,
    # this line will create a GeoPandas GeoDataFrame from the nearest_nodes_30 dictionary
    points_30 = gpd.GeoDataFrame(gpd.GeoSeries(nx.get_node_attributes(G.subgraph(nearest_nodes_30), 'geometry')))

    # This line converts the nearest_nodes_30 dictionary into a Pandas data frame and joins it to points
    # left_index=True and right_index=True are options for merge() to join on the index values
    points_30 = points_30.merge(pd.Series(nearest_nodes_30).to_frame(), left_index=True, right_index=True)

    # Re-name the columns and set the geodataframe geometry to the geometry column
    points_30 = points_30.rename(columns={'0_x':'geometry','0_y':'z'}).set_geometry('geometry')

    # Create a convex hull polygon from the points
    polygon_30 = gpd.GeoDataFrame(gpd.GeoSeries(points_30.unary_union.convex_hull))
    polygon_30 = polygon_30.rename(columns={0:'geometry'}).set_geometry('geometry')
    
    # 20 MIN
    # Select nodes less than or equal to 20
    points_20 = points_30.query("z <= 20")
    
    # Create a convex hull polygon from the points
    polygon_20 = gpd.GeoDataFrame(gpd.GeoSeries(points_20.unary_union.convex_hull))
    polygon_20 = polygon_20.rename(columns={0:'geometry'}).set_geometry('geometry')
    
    # 10 MIN
    # Select nodes less than or equal to 10
    points_10 = points_30.query("z <= 10")
    
    # Create a convex hull polygon from the points
    polygon_10 = gpd.GeoDataFrame(gpd.GeoSeries(points_10.unary_union.convex_hull))
    polygon_10 = polygon_10.rename(columns={0:'geometry'}).set_geometry('geometry')
    
    # Create empty list and append polygons
    polygons = []
    
    # Append
    polygons.append(polygon_10)
    polygons.append(polygon_20)
    polygons.append(polygon_30)
    
    # Clip the overlapping distance ploygons (create two donuts + hole)
    for i in reversed(range(1, len(distances))):
        polygons[i] = gpd.overlay(polygons[i], polygons[i-1], how="difference")

    return polygons

hospital_measure_acc (adjusted to incorporate dijkstra_cca_polygons)¶

Measures the effect of a single hospital on the surrounding area. (Uses dijkstra_cca_polygons)

Args:

  • _thread_id: int used to keep track of which thread this is
  • hospital: Geopandas dataframe with information on a hospital
  • pop_data: Geopandas dataframe with population data
  • distances: Distances in time to calculate accessibility for
  • weights: how to weight the different travel distances

Returns:

  • Tuple containing:
    • Int (_thread_id)
    • GeoDataFrame of catchment areas with key stats
In [17]:
def hospital_measure_acc (_thread_id, hospital, pop_data, distances, weights):
    # Create polygons
    polygons = dijkstra_cca_polygons(G, hospital['nearest_osm'], distances)
    
    # Calculate accessibility measurements
    num_pops = []
    for j in pop_data.index:
        point = pop_data['geometry'][j]
        # Multiply polygons by weights
        for k in range(len(polygons)):
            if len(polygons[k]) > 0: # To exclude the weirdo (convex hull is not polygon)
                if (point.within(polygons[k].iloc[0]["geometry"])):
                    num_pops.append(pop_data['pop'][j]*weights[k])  
    total_pop = sum(num_pops)
    for i in range(len(distances)):
        polygons[i]['time']=distances[i]
        polygons[i]['total_pop']=total_pop
        polygons[i]['hospital_icu_beds'] = float(hospital['Adult ICU'])/polygons[i]['total_pop'] # proportion of # of beds over pops in 10 mins
        polygons[i]['hospital_vents'] = float(hospital['Total Vent'])/polygons[i]['total_pop'] # proportion of # of beds over pops in 10 mins
        polygons[i].crs = { 'init' : 'epsg:4326'}
        polygons[i] = polygons[i].to_crs({'init':'epsg:32616'})
    print('{:.0f}'.format(_thread_id), end=" ", flush=True)
    return(_thread_id, [ polygon.copy(deep=True) for polygon in polygons ]) 

measure_acc_par¶

Parallel implementation of accessibility measurement.

Args:

  • hospitals: Geodataframe of hospitals
  • pop_data: Geodataframe containing population data
  • network: OSMNX street network
  • distances: list of distances to calculate catchments for
  • weights: list of floats to apply to different catchments
  • num_proc: number of processors to use.

Returns:

  • Geodataframe of catchments with accessibility statistics calculated
In [18]:
def hospital_acc_unpacker(args):
    return hospital_measure_acc(*args)

# WHERE THE RESULTS ARE POOLED AND THEN REAGGREGATED
def measure_acc_par (hospitals, pop_data, network, distances, weights, num_proc = 4):
    catchments = []
    for distance in distances:
        catchments.append(gpd.GeoDataFrame())
    pool = mp.Pool(processes = num_proc)
    hospital_list = [ hospitals.iloc[i] for i in range(len(hospitals)) ]
    print("Calculating", len(hospital_list), "hospital catchments...\ncompleted number:", end=" ")
    results = pool.map(hospital_acc_unpacker, zip(range(len(hospital_list)), hospital_list, itertools.repeat(pop_data), itertools.repeat(distances), itertools.repeat(weights)))
    pool.close()
    results.sort()
    results = [ r[1] for r in results ]
    for i in range(len(results)):
        for j in range(len(distances)):
            catchments[j] = catchments[j].append(results[i][j], sort=False)
    return catchments

overlap_calc¶

Calculates and aggregates accessibility statistics for one catchment on our grid file.

Args:

  • _id: thread ID
  • poly: GeoDataFrame representing a catchment area
  • grid_file: a GeoDataFrame representing our grids
  • weight: the weight to applied for a given catchment
  • service_type: the service we are calculating for: ICU beds or ventilators

Returns:

  • Tuple containing:
    • thread ID
    • Counter object (dictionary for numbers) with aggregated stats by grid ID number
In [19]:
from collections import Counter
def overlap_calc(_id, poly, grid_file, weight, service_type):
    value_dict = Counter()  #set up value_dict
    if type(poly.iloc[0][service_type])!=type(None):  #make sure point has at least one ICU bed or ventilator          
        value = float(poly[service_type])*weight      #weight depending on catchment area
        intersect = gpd.overlay(grid_file, poly, how='intersection') #take intersections of catchment area and hexagons
        intersect['overlapped']= intersect.area         #calculate the area of fragments that are both catchment area and hexagon
        intersect['percent'] = intersect['overlapped']/intersect['area']  #calculate percent of area of a catchment area within each hexagon
        intersect=intersect[intersect['percent']>=0.5]          #throw away catchments that are less than 50% in a hexagon 
        intersect_region = intersect['id']                 
        for intersect_id in intersect_region:
            try:
                value_dict[intersect_id] +=value 
            except:
                value_dict[intersect_id] = value
    return(_id, value_dict)

def overlap_calc_unpacker(args):
    return overlap_calc(*args)

overlapping_function¶

Calculates how all catchment areas overlap with and affect the accessibility of each grid in our grid file.

Args:

  • grid_file: GeoDataFrame of our grid
  • catchments: GeoDataFrame of our catchments
  • service_type: the kind of care being provided (ICU beds vs. ventilators)
  • weights: the weight to apply to each service type
  • num_proc: the number of processors

Returns:

  • Geodataframe - grid_file with calculated stats
In [20]:
def overlapping_function (grid_file, catchments, service_type, weights, num_proc = 4):
    grid_file[service_type]=0
    pool = mp.Pool(processes = num_proc)
    acc_list = []
    for i in range(len(catchments)):
        acc_list.extend([ catchments[i][j:j+1] for j in range(len(catchments[i])) ])
    acc_weights = []
    for i in range(len(catchments)):
        acc_weights.extend( [weights[i]]*len(catchments[i]) )
    results = pool.map(overlap_calc_unpacker, zip(range(len(acc_list)), acc_list, itertools.repeat(grid_file), acc_weights, itertools.repeat(service_type)))
    pool.close()
    results.sort()
    results = [ r[1] for r in results ]
    service_values = results[0]
    for result in results[1:]:
        service_values+=result
    for intersect_id, value in service_values.items():
        grid_file.loc[grid_file['id']==intersect_id, service_type] += value
    return(grid_file) 

normalization¶

Normalizes our result (Geodataframe) for a given resource (res).

In [21]:
def normalization (result, res):
    result[res]=(result[res]-min(result[res]))/(max(result[res])-min(result[res]))
    return result

file_import¶

Imports all files we need to run our code and pulls the Illinois network from OSMNX if it is not present (will take a while).

NOTE: even if we calculate accessibility for just Chicago, we want to use the Illinois network (or at least we should not use the Chicago network) because using the Chicago network will result in hospitals near but outside of Chicago having an infinite distance (unreachable because roads do not extend past Chicago).

Args:

  • pop_type: population type, either "pop" for general population or "covid" for COVID-19 cases
  • region: the region to use for our hospital and grid file ("Chicago" or "Illinois")

Returns:

  • G: OSMNX network
  • hospitals: Geodataframe of hospitals
  • grid_file: Geodataframe of grids
  • pop_data: Geodataframe of population
In [22]:
def output_map(output_grid, base_map, hospitals, resource):
    ax=output_grid.plot(column=resource, cmap='PuBuGn',figsize=(18,12), legend=True, zorder=1)
    # Next two lines set bounds for our x- and y-axes because it looks like there's a weird 
    # Point at the bottom left of the map that's messing up our frame (Maja)
    ax.set_xlim([314000, 370000])
    ax.set_ylim([540000, 616000])
    base_map.plot(ax=ax, facecolor="none", edgecolor='gray', lw=0.1)
    hospitals.plot(ax=ax, markersize=10, zorder=1, c='blue')

Run the model¶

Below you can customize the input of the model:

  • Processor - the number of processors to use
  • Region - the spatial extent of the measure
  • Population - the population to calculate the measure for
  • Resource - the hospital resource of interest
  • Hospital - all hospitals or subset to check code
In [23]:
import ipywidgets
from IPython.display import display

processor_dropdown = ipywidgets.Dropdown( options=[("1", 1), ("2", 2), ("3", 3), ("4", 4)],
    value = 4, description = "Processor: ")

population_dropdown = ipywidgets.Dropdown( options=[("Population at Risk", "pop"), ("COVID-19 Patients", "covid") ],
    value = "pop", description = "Population: ")

resource_dropdown = ipywidgets.Dropdown( options=[("ICU Beds", "hospital_icu_beds"), ("Ventilators", "hospital_vents") ],
    value = "hospital_icu_beds", description = "Resource: ")

hospital_dropdown =  ipywidgets.Dropdown( options=[("All hospitals", "hospitals"), ("Subset", "hospital_subset") ],
    value = "hospitals", description = "Hospital:")

display(processor_dropdown,population_dropdown,resource_dropdown,hospital_dropdown)
Dropdown(description='Processor: ', index=3, options=(('1', 1), ('2', 2), ('3', 3), ('4', 4)), value=4)
Dropdown(description='Population: ', options=(('Population at Risk', 'pop'), ('COVID-19 Patients', 'covid')), …
Dropdown(description='Resource: ', options=(('ICU Beds', 'hospital_icu_beds'), ('Ventilators', 'hospital_vents…
Dropdown(description='Hospital:', options=(('All hospitals', 'hospitals'), ('Subset', 'hospital_subset')), val…

Process population data¶

In [24]:
if population_dropdown.value == "pop":
    pop_data = pop_centroid(atrisk_data, population_dropdown.value)
elif population_dropdown.value == "covid":
    pop_data = pop_centroid(covid_data, population_dropdown.value)
distances=[10,20,30] # Distances in travel time
weights=[1.0, 0.68, 0.22] # Weights where weights[0] is applied to distances[0]
# Other weighting options representing different distance decays
# weights1, weights2, weights3 = [1.0, 0.42, 0.09], [1.0, 0.75, 0.5], [1.0, 0.5, 0.1]
# it is surprising how long this function takes just to calculate centroids.
# why not do it with the geopandas/pandas functions rather than iterating through every item?
Pop Centroid File Setting: 100%|██████████| 3121/3121 [05:42<00:00,  9.10it/s]

Process hospital data¶

If you have already run this code and changed the Hospital selection, rerun the Load Hospital Data block.

In [25]:
# Set hospitals according to hospital dropdown
if hospital_dropdown.value == "hospital_subset":
    hospitals = hospital_setting(hospitals[:1], G)
else: 
    hospitals = hospital_setting(hospitals, G)
resources = ["hospital_icu_beds", "hospital_vents"] # resources
# this is also slower than it needs to be; if network nodes and hospitals are both
# geopandas data frames, it should be possible to do a much faster spatial join rather than iterating through every hospital
Find the nearest network node from hospitals: 100%|██████████| 66/66 [01:50<00:00,  1.67s/it]
hospital setting is done

Visualize catchment areas for first hospital¶

In [26]:
# # Create point geometries for entire graph
# # what is the pupose of the following two lines? Can this be deleted?
# for node, data in G.nodes(data=True):
#     data['geometry']=Point(data['x'], data['y'])

# which hospital to visualize? 
fighosp = 0

# Create catchment for hospital 0
poly = dijkstra_cca_polygons(G, hospitals['nearest_osm'][fighosp], distances)

# Reproject polygons
for i in range(len(poly)):
    poly[i].crs = { 'init' : 'epsg:4326'}
    poly[i] = poly[i].to_crs({'init':'epsg:32616'})

# Reproject hospitals 
# Possible to map from the hospitals data rather than creating hospital_subset?
hospital_subset = hospitals.iloc[[fighosp]].to_crs(epsg=32616)

fig, ax = plt.subplots(figsize=(12,8))

min_10 = poly[0].plot(ax=ax, color="royalblue", label="10 min drive")
min_20 = poly[1].plot(ax=ax, color="cornflowerblue", label="20 min drive")
min_30 = poly[2].plot(ax=ax, color="lightsteelblue", label="30 min drive")

hospital_subset.plot(ax=ax, color="red", legend=True, label = "hospital")

# Add legend
ax.legend()
Out[26]:
<matplotlib.legend.Legend at 0x7fcff54b52b0>
In [ ]:
poly

Calculate hospital catchment areas¶

In [27]:
%%time
catchments = measure_acc_par(hospitals, pop_data, G, distances, weights, num_proc=processor_dropdown.value)
Calculating 66 hospital catchments...
completed number: 0 15 10 5 1 16 611  2 7 12 17 3 8 13 18 4 9 14 19 20 25 30 35 21 26 31 22 36 27 32 37 23 28 33 38 24 29 39 34 40 55 45 50 41 46 56 42 51 47 57 43 52 48 58 53 44 59 49 54 60 65 61 62 63 64 CPU times: user 4.09 s, sys: 1.37 s, total: 5.46 s
Wall time: 2min 55s

Calculate accessibility¶

In [28]:
%%time
for j in range(len(catchments)):
    catchments[j] = catchments[j][catchments[j][resource_dropdown.value]!=float('inf')]
result=overlapping_function(grid_file, catchments, resource_dropdown.value, weights, num_proc=processor_dropdown.value)
CPU times: user 12.4 s, sys: 944 ms, total: 13.3 s
Wall time: 33.1 s
In [29]:
%%time
result = normalization (result, resource_dropdown.value)
CPU times: user 7.78 ms, sys: 2.1 ms, total: 9.87 ms
Wall time: 7.91 ms
In [30]:
result.head()
Out[30]:
left top right bottom id area geometry hospital_vents
0 440843.416087 4.638515e+06 441420.766356 4.638015e+06 4158 216661.173 POLYGON ((440843.416 4638265.403, 440987.754 4... 0.921406
1 440843.416087 4.638015e+06 441420.766356 4.637515e+06 4159 216661.168 POLYGON ((440843.416 4637765.403, 440987.754 4... 0.921406
2 440843.416087 4.639515e+06 441420.766356 4.639015e+06 4156 216661.169 POLYGON ((440843.416 4639265.403, 440987.754 4... 0.956446
3 440843.416087 4.639015e+06 441420.766356 4.638515e+06 4157 216661.171 POLYGON ((440843.416 4638765.403, 440987.754 4... 0.925965
4 440843.416087 4.640515e+06 441420.766356 4.640015e+06 4154 216661.171 POLYGON ((440843.416 4640265.403, 440987.754 4... 0.963625

Results & Discussion¶

While the OpenStreetMap data that we imported contained speed limits for some road segments, the vast majority of edges of our network graph did not have any speed limit attribute. This attribute is important to the way that our network analysis runs because we need to be able to compute travel times to and from hospitals. The way that the original study dealt with this was by setting the speed limit of all of the road segments that didn’t have an assigned speed limit equal to 35 mph. In the reanalysis of the study, all unassigned speed limits were set to 30 mph. Setting almost all of the roads equal to 30 or 35 dramatically decreases the speeds of highways that may not have speed limits in OpenStreetMap and increases the speeds of residential roads. To solve this issue we decided to use the osmnx.speed function to assign speed limit values. This function kept the speed limit values for those that had listed values, but then for all of the other road segments it assigned a value based on the mean speed limit for that specific road type eg. highway, residential, primary, secondary. This meant that we got a much more nuanced selection of speed limits. We ended up getting that the most common speed limit was around 25 mph. This would make sense given how this would be the assumed speed limit for most residential roads which would make up a large number of the total road segments. The major issue with earlier ways of assigning speed limits was the assumption that all roads essentially behaved in the same way. We still face this issue to an extent. We can call this threat to validity an assumption of spatial homogeneity — we are assuming that all roads of a given type will be the same and we ignore features like one way roads, traffic, or modalities of transportation besides car that may add additional friction to our model. This frictionless view of a street network does not reflect geographic reality, however, we have made strides to improve the accuracy of our road network.

Accessibility Map¶

In [31]:
%%time
hospitals = hospitals.to_crs({'init': 'epsg:26971'})
result = result.to_crs({'init': 'epsg:26971'})
output_map(result, pop_data, hospitals, resource_dropdown.value)
CPU times: user 4.62 s, sys: 592 ms, total: 5.21 s
Wall time: 4.6 s

Classified Accessibility Outputs

Conclusion¶

Our tweaking of the osm speed limit data to create a more detailed model of road speeds may change how we should view the original Kang et al. study. The piece of the study that we should perhaps be most curious about or wary of is the construction of catchment areas. The catchment area calculations depend significantly on the road network graph that has been constructed and in the original study, almost all of the roads had a speed limit set to 35 mph. Given our most recent reanalysis which found that most road segments should actually have a speed limit closer to 25 mph, it is probable that the original studies catchment areas were larger than they should have been. For example, you could get to a hospital in 20 minutes from a further distance if you were driving at 35 mph than at 25 mph. Therefore, it is possible that Kang et al. overestimate spatial accessibility to COVID-19 resources. However, given our most recent reanalysis more highways have speed limits set to 60 mph instead of 35 mph so the original catchment areas may instead underestimate spatial accesibility to healthcare resources for those who live close to a large highway that takes them close to the hospital. Overall, our tweaking of speed limit data helps us examine the struggle of adding complexity to our network model while also knowing that we will not be able to include all variables that could potentially cause friction in a transportation network. Chicago is not an isometric plane and while our network graph introduces more complexity we are unable to perfectly measure transportation without additional data.

References¶

Luo, W., & Qi, Y. (2009). An enhanced two-step floating catchment area (E2SFCA) method for measuring spatial accessibility to primary care physicians. Health & place, 15(4), 1100-1107.